Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(3): 230-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507695

RESUMO

As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.


Assuntos
Marte , Voo Espacial , Humanos , Meio Ambiente Extraterreno , Exobiologia , Contenção de Riscos Biológicos , Astronave
2.
Astrobiology ; 17(10): 997-1008, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29048223

RESUMO

Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO4)2), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H2O source. Also, neither crystalline nor liquid Ca(ClO4)2 is sporicidal despite the low water activity. Key Words: Raman microscopy-Mars-Planetary protection-Salts-Water activity. Astrobiology 17, 997-1008.


Assuntos
Adaptação Fisiológica , Bacillus subtilis/fisiologia , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Marte , Atmosfera/química , Percloratos/química , Salinidade , Esporos Bacterianos/fisiologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...